Ensemble Clustering of High Dimensional Data with FastMap Projection

نویسندگان

  • Imran Khan
  • Joshua Zhexue Huang
  • Nguyen Thanh Tung
  • Graham J. Williams
چکیده

In this paper, we propose an ensemble clustering method for high dimensional data which uses FastMap projection to generate subspace component data sets. In comparison with popular random sampling and random projection, FastMap projection preserves the clustering structure of the original data in the component data sets so that the performance of ensemble clustering is improved significantly. We present two methods to measure preservation of clustering structure of generated component data sets. The comparison results have shown that FastMap preserved the clustering structure better than random sampling and random projection. Experiments on three real data sets were conducted with three data generation methods and three consensus functions. The results have shown that the ensemble clustering with FastMap projection outperformed the ensemble clusterings with random sampling and random projection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach

We investigate how random projection can best be used for clustering high dimensional data. Random projection has been shown to have promising theoretical properties. In practice, however, we find that it results in highly unstable clustering performance. Our solution is to use random projection in a cluster ensemble approach. Empirical results show that the proposed approach achieves better an...

متن کامل

Ensemble Fuzzy Clustering using Cumulative Aggregation on Random Projections

Random projection is a popular method for dimensionality reduction due to its simplicity and efficiency. In the past few years, random projection and fuzzy c-means based cluster ensemble approaches have been developed for high dimensional data clustering. However, they require large amounts of space for storing a big affinity matrix, and incur large computation time while clustering in this aff...

متن کامل

Cluster Ensembles for High Dimensional Clustering: An Empirical Study

This paper studies cluster ensembles for high dimensional data clustering. We examine three different approaches to constructing cluster ensembles. To address high dimensionality, we focus on ensemble construction methods that build on two popular dimension reduction techniques, random projection and principal component analysis (PCA). We present evidence showing that ensembles generated by ran...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014